Publications & Preprints

  • Machine Learning for Informed Representation Learning.
    M. Samarin.
    PhD Thesis, 2022.
    [PDF]
  • Mesh-free Eulerian Physics-Informed Neural Networks.
    F. Arend Torres, M. Negri, M. Nagy-Huber, M. Samarin & V. Roth.
    arXiv preprint arXiv:2206.01545, 2022.
    [arXiv]
  • Feature Learning and Random Features in Standard Finite-Width Convolutional Neural Networks: An Empirical Study.
    M. Samarin, V. Roth & D. Belius.
    Accepted to the Conference on Uncertainty in Artificial Intelligence (UAI) 2022.
    [paper, OpenReview]
  • Learning Invariances with Generalised Input-Convex Neural Networks.
    V. Nesterov, F. Arend Torres, M. Nagy-Huber, M. Samarin & V. Roth.
    arXiv preprint arXiv:2204.07009, 2022.
    [arXiv]
  • Learning Conditional Invariance through Cycle Consistency.
    M. Samarin*, V. Nesterov*, M. Wieser, A. Wieczorek, S. Parbhoo, & V. Roth.
    Conference on Pattern Recognition (GCPR), 2021.
    [video, paper, arXiv, code]
  • Investigating Causal Factors of Shallow Landslides in Grassland Regions of Switzerland.
    L. Zweifel, M. Samarin, K. Meusburger, & C. Alewell.
    Natural Hazards and Earth System Sciences (NHESS), 2021.
    [paper]
  • Learning Extremal Representations with Deep Archetypal Analysis.
    S. M. Keller, M. Samarin, F. Arend Torres, M. Wieser & V. Roth.
    International Journal on Computer Vision (IJCV), 2020.
    [paper, arXiv, code]
  • Identifying Soil Erosion Processes in Alpine Grasslands on Aerial Imagery with a U-Net Convolutional Neural Network.
    M. Samarin*, L. Zweifel*, V. Roth & C. Alewell.
    Remote Sensing, 2020.
    [paper, code]
  • On the Empirical Neural Tangent Kernel of Standard Finite-Width Convolutional Neural Network Architectures.
    M. Samarin, V. Roth & D. Belius.
    arXiv preprint arXiv:2006.13645, 2020.
    [arXiv]
  • Deep Archetypal Analysis.
    S. M. Keller, M. Samarin, M. Wieser & V. Roth.
    German Conference on Pattern Recognition (GCPR), 2019.
    GCPR 2019 Honorable Mention Paper Award.
    [paper, arXiv, code]